
1

Extreme-Scale Stochastic Particle Tracing for
Uncertain Unsteady Flow Analysis

Hanqi Guo, Member, IEEE, Wenbin He, Sangmin Seo, Member, IEEE, Han-Wei Shen, Member, IEEE,

Tom Peterka, Member, IEEE

Abstract—We present an efficient and scalable solution to estimate uncertain transport behaviors using stochastic flow maps (SFMs)

for visualizing and analyzing uncertain unsteady flows. SFM computation is extremely expensive because it requires many Monte Carlo

runs to trace densely seeded particles in the flow. We alleviate the computational cost by decoupling the time dependencies in SFMs

so that we can process adjacent time steps independently and then compose them together for longer time periods. Adaptive

refinement is also used to reduce the number of runs for each location. We then parallelize over tasks—packets of particles in our

design—to achieve high efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We

show the scalability on two supercomputers, Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs),

that can trace billions of particles in seconds.

Index Terms—Parallel particle tracing, Uncertain flow visualization, Lagrangian coherent structures.

✦

1 INTRODUCTION

V ISUALIZING and analyzing data with uncertainty are
important in many science and engineering domains,

such as climate and weather research, computational fluid
dynamics, and materials science. Instead of analyzing de-
terministic data, scientists can gain more understanding by
investigating uncertain data that are derived and quanti-
fied from experiments, interpolation, or numerical ensem-
ble simulations. For example, typical analyses of uncertain
flows involve finding possible pollution diffusion paths in
environmental sciences with uncertain source-destination
queries and locating uncertain flow boundaries in compu-
tational fluid dynamics models with uncertain Lagrangian
analysis.

In this work, we develop a scalable solution to compute
stochastic flow maps (SFMs), which characterize transport
behaviors in uncertain unsteady flows. SFMs are the gen-
eralization of flow maps of deterministic data and hence
are the basis for uncertain flow analysis. Formally, the flow
map is a function that maps the start location and the end
location after time T in a flow field; the SFM follows the
same definition except that the end location is stochastic.
Applications based on SFMs include not only uncertain
source-destination queries but also uncertain flow separatrix

• Hanqi Guo is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: hguo@anl.gov

• Wenbin He is with the Department of Computer Science and Engineering,
the Ohio State University, Columbus, OH 43210, USA.
E-mail: he.495@buckeyemail.osu.edu

• Sangmin Seo is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: sseo@anl.gov

• Han-Wei Shen is with the Department of Computer Science and Engi-
neering, the Ohio State University, Columbus, OH 43210, USA.
E-mail: shen.94@osu.edu

• Tom Peterka is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: tpeterka@mcs.anl.gov

Manuscript received July X, 2016.

extraction [1] and uncertain flow topology analysis [2]. For
example, finite-time Lyapunov exponent (FTLE) analysis
can be generalized to understand uncertain transport behav-
iors in uncertain flows [1]. The distribution of Lagrangian
coherent structures (LCS)—the flow boundaries in unsteady
flows—can be further extracted as the ridges in stochastic
FTLE fields. Similarly, uncertain flow topologies are based
on the distributions of SFMs. However, the main obstacle
in uncertain flow analysis is the high computational cost of
SFMs.

SFM computation is extremely expensive and thus re-
quires supercomputers. Currently, the only practical solu-
tion for computing SFMs is to perform Monte Carlo runs,
which trace the particle stochastically in the uncertain data.
However, one must trace billions or even trillions of parti-
cles for a typical analysis. For example, if the number of grid
points and Monte Carlo runs is 106 and 103, respectively,
and if the data has 103 time steps, the overall number of par-
ticles will be 1012. As documented in previous studies [1],
[2], it may take hours to days to run a small problem, even
with GPU acceleration.

Achieving high scalability with existing parallel particle
tracing algorithms in SFM computation is difficult. Two
basic parallelization strategies exist: parallel-over-seeds and
parallel-over-data. The parallel-over-seeds algorithms dis-
tribute particles over processes, and each process loads the
required data on demand. The parallel-over-data algorithms
partition the data into blocks, distribute the blocks to differ-
ent processes on initialization, and exchange particles that
are leaving the local blocks during the run time. However,
existing algorithms suffer low parallel efficiency on large-
scale machines because of the flow complexity and the
communication cost. In recent publications, the parallel effi-
ciency is about 45% on 16K cores for 162M particles [3] and
35% on 16K cores for 40M particles [4]. Tracing billions or
even trillions of particles at extreme scale is still challenging.

We have observed two major differences between deter-

2

ministic and stochastic flow map computations. First, the
task dependencies in deterministic flow map computation
are strict, but they can be relaxed in SFM computation.
By default, one must trace a particle based on its current
location. In the stochastic case, the “current” location is
also stochastic; thus the strong dependency can be released
by transforming the problem into a probabilistic model.
Second, the problem size of SFM computation is much
larger. Existing parallel algorithms do not scale for the
numbers of particles required by the Monte Carlo runs.
The challenges are the memory footprint, the designs of
task models, load balancing, and communication patterns.
Solving these challenges requires a new parallel framework
for SFM computation.

We propose a decoupled SFM computation that removes
the time dependencies, in turn reducing communication
and improving scalability. For time-varying uncertain flow
data, we can compute SFMs between adjacent time steps
independently and then compose them for any arbitrary
time interval of interest. The rationale for the composition
is the law of total probability. The computation is based
on sparse matrix multiplication. Because the working data
(two adjacent time steps) is much smaller than the whole
sequence, we can duplicate the working data across pro-
cesses as much as possible, so that more data are locally
available. Decoupling the advection into short time intervals
also shortens the travel distances of particles, and thus
less communication is required. In addition, we introduce
adaptive refinement over the number of Monte Carlo runs
for each seed location. Experiments show that computing
decoupled SFMs combined with adaptive refinement is
more efficient.

In our software architecture, we adopt a novel hierar-
chical parallelization. On the top level, processes are subdi-
vided into groups, each with a duplication of the working
data. They are embarrassingly parallel over shuffled seed
locations. Within groups, each process has a portion of data
blocks, and MPI/thread hybrid parallelization is used. A
dedicated thread is used to manage nonblocking interpro-
cess communications, and a pool of threads is employed to
process particle tracing tasks. Lock-free data structures are
also used to manage the task queues. All compute cores
work concurrently without any synchronization.

The task model design is also unique. The granularity
of a task is a packet of particles associated with the same
block. The benefits of this approach are avoiding frequent
context switch in MPI/thread parallelization and enabling
CPU/GPU coprocessing when GPUs are available. The phi-
losophy of coprocessing is to schedule complex and heavy
tasks for GPUs while leaving lighter tasks for CPUs. To
the best of our knowledge, our system is the first such hy-
brid CPU/GPU implementation for parallel particle tracing
problems.

We demonstrate the scalability of our system on two
supercomputers: Mira at Argonne National Laboratory and
Titan at Oak Ridge National Laboratory. On Mira, we test
the performance up to 1 million Blue Gene/Q cores over
16,384 nodes. On Titan, we test up to 131,072 AMD Opteron
cores cooperating with 8,192 NVIDIA K20X GPUs. On
these supercomputers, our method allows tens of billions
of particles to be traced in seconds. Our system thus can

help scientists analyze uncertain flows in greater detail with
higher performance than previously possible. In summary,
the contributions of this paper are as follows.

• A decoupled scheme that makes it possible to com-
pute SFMs in a highly parallelized manner

• An adaptive refinement algorithm to reduce SFM
computation cost

• A fully asynchronous parallel framework for
stochastic parallel tracing based on thread pools,
nonblocking communication, and lock-free data
structures

• A parallel CPU/GPU coprocessing particle tracing
implementation based on the asynchronous frame-
work

• Scalability evaluation of our implementation on two
supercomputers

The rest of this paper is organized as follows. We intro-
duce the background and review related work in Section 2.
The decoupled and adaptive SFM computation is described
in Section 3, followed by the parallel framework design in
Section 4. We demonstrate the application cases in Section 5
and then evaluate the performance in Section 6. In Section 7,
we drawn conclusions and discuss future work.

2 BACKGROUND

We formalize the concepts of SFMs and review the related
work on uncertain flow visualization and parallel particle
tracing.

2.1 Stochastic Flow Maps

We review the concepts of flow maps in deterministic data
and then describe their generalization in uncertain flows.

Formally, in a deterministic flow field v : R
n+1 →

R
n, the flow map φ maps the (n + 2)-dimensional tuple

(x0, t0, t1) into R
n, where n is the data dimension and t0, t1

are time. As illustrated in Figure 1(a), the physical meaning
of φt1

t0
(x0) is the location at time t1 of the massless particle

released at the spatiotemporal location (x0, t0). Assuming v

satisfies the Lipschitz condition, the flow map is defined by
the initial value problem

∂φt1
t0
(x0)

∂t1
= v(φt1

t0
(x0)), and φt0

t0
(x0) = x0. (1)

In analyses such as FTLE, the flow map is usually computed
at the same resolution as that at the data discretization.
Particles are seeded at every grid point (or cell center) and
then traced over time until time t1. Numerical methods,
such as Euler or Runge-Kutta, are usually used in the
particle tracing. Based on the definition, we can derive that

φt2
t0
(x0) = φt2

t1
(φt1

t0
(x0)) = φt2

t1
(x1), (2)

where t0 ≤ t1 ≤ t2.
The uncertain flow field V : Rn+1 → R

n and its flow
map Φ are stochastic. As shown in Figure 1(b), for a given
seed (x0, t0), the final location of this particle at time t1
is a random variable denoted as Φt1

t0
(x0). The probability

density function of Φt1
t0
(x0) is defined as

3

x1=φ01(x0)

x0

t0 t1 t2 t0 t1

x2=φ02(x0)
=φ12(x1)

(a) (b)

x0 X1=Φ01(x0)

(c)

ρ01(x0)

0 1=Φ1Φ

00

ΦΦ

01

1=1=1=

000000(x(x(x(x(x(x(x

XX

t2

X2=Φ02(x0)

ρ02(x0)

2=ΦΦ22Φ

02

ΦΦΦΦ

02

2=2=2=

000(x(x(x(x(x(x

XXX x0

t2

ρ02(x0)ρ01

ρ12

0202 000(x(x(x(x(x(x

t0

0

t0 t1

x00x

t1 t2

x1xx

Fig. 1. (a) Flow map computation in a deterministic flow; (b) direct SFM computation in an uncertain flow; (c) decoupled SFM computation.

ρt1t0(x0;x) = Pr(Φt1
t0
(x0) = x), (3)

where ρ is a (2n+2)-dimensional scalar function. In practice,
we use the discretized form of SFM for computation and
storage,

pt1t0(i, j) = Pr(Φt1
t0
(C̄i) ∈ Cj), (4)

where Ci and Cj are the ith and jth cell in the mesh
discretization, and C̄ is the centroid of a cell. The straight-
forward approach is direct Monte Carlo simulation based
on Euler-Maruyama or stochastic Runge-Kutta methods. For
each cell Ci, we trace a number of particles from the centroid
C̄i and then estimate the density of particles in other cells.
The computation of p is extremely expensive. Hence, we
must alleviate the cost with a novel parallelization strategy.

2.2 Uncertain Flow Visualization and Analysis

Comprehensive reviews of uncertainty visualization can be
found in [5], [6], and reviews of flow visualization are
available in [7], [8], [9].

We categorize uncertain flow visualization techniques
into two major types: Eulerian and Lagrangian methods.
This classification based on fluid dynamics considers flow
fields at specific spatiotemporal locations and at individual
moving parcels, respectively. Eulerian uncertain flow visu-
alizations usually directly encode data into visual channels,
such as colors, glyphs [10], and textures [11]. Our focus
instead in this paper is on the Lagrangian methods that
analyze transport behaviors in uncertain unsteady flows.

Lagrangian uncertain flow visualization includes topol-
ogy analysis for stationary data and FTLE-based analysis for
time-varying data. Otto et al. [12] extend vector field topol-
ogy to 2D static uncertain flow. Monte Carlo approaches
are used to trace streamlines that lead to topological seg-
mentation. The same technique is applied to 3D uncertain
flows in a later work [2]. For 3D unsteady flows, vector
field topologies are no longer feasible because they are
unstable and overwhelmingly complicated. FTLE and LCS
are alternatives for analyzing unsteady flows. One use of
FTLE in uncertain unsteady flows is finite-time variance
analysis [13], which is based on the variance of particles
advected from the same locations over a time interval of
interest. Recently, Guo et al. [1] proposed two metrics to
generalize FTLE in uncertain unsteady flows: D-FTLE and
FTLE-D. The former is the distribution of FTLE values that
can lead to uncertain LCS extraction; the latter measures
the divergence of particle distributions and has showed
better results than variance-based methods. In this paper,

Process 1 Process 2

(a) (b) (c)

Fig. 2. Existing parallel particle tracing paradigms include (a) parallel-
over-data and (b) parallel-over-seeds. We employ a task-parallel
scheme (c) in this paper. Our task granularity is a packet of particles
associated with the same block.

we address the common problem of these methods: the high
computational cost of Monte Carlo particle tracing.

2.3 Parallel Particle Tracing

Parallel particle tracing is a challenging problem in both
the HPC and visualization communities. A comprehensive
review of this topic can be found in [14]. Parallel particle
tracing algorithms can be categorized into two basic types—
parallel-over-data and parallel-over-seeds, as illustrated in
Figure 2. The two paradigms can also be combined for better
scalability.

Parallel-over-data algorithms rely on data partitioning
for load balancing. A common practice of data partitioning
is to subdivide the domain into regular blocks. Peterka
et al. [15] show that static round-robin block assignments
with fine block partitioning can lead to good load balancing
in tracing streamlines in 3D vector fields. The static load
balancing can be further improved by assigning blocks
based on estimated workloads [16]. Nouanesengsy et al. [3]
further partition the data over time in FTLE computation.
In addition to regular blocks, irregular partitioning schemes
are used to improve the load balancing. For eample, Yu et
al. [17] propose a hierarchical representation of flows, which
defines irregular partitions for parallel particle tracing. Sim-
ilarly, mesh repartitioning algorithms are used to balance
the workload across processes [18]. Our method follows
the regular decomposition and round-robin assignments for
parallelism.

In parallel-over-seeds algorithms, seeds are distributed
over processes. Pugmire et al. [19] explore this strategy
to load data blocks on demand; thus no communication
occurs between processes to exchange particles. Guo et
al. [20] present a framework to manage the on-demand

4

Uncertain
Unsteady

Flows

Decoupled
SFMs

Arbitrary
Interval

SFMs

Vis &
Analysis

Fig. 3. Our workflow. We compute decoupled SFMs for successive time
steps and then compose them to get SFMs of arbitrary intervals for
visualization and analysis.

data access based on the key-value store. Fine-grained block
partitioning and data prefetching are employed to improve
the parallel efficiency. The parallel-over-seeds paradigm
shows better performance in applications such as 3D stream
surface computation [21], but it often suffers from load-
balancing issues because flow behaviors are complicated
and unpredictable. Work stealing has been used to improve
the load balancing in 3D stream surfaces computation [22].
Mueller et al. [23] propose a work-requesting approach
that uses a master process to dynamically schedule the
computations. In our work, we dynamically schedule the
tasks between worker threads within single processes.

Hybrid methods combine both parallelization
paradigms. For example, a hybrid master/worker model
can be used to dynamically schedule both particles and
blocks [19]. DStep [4] employs multitiered task scheduling
combined with static data distribution. The framework
is further extended to handle a large number of pathline
tracing tasks for ensemble flow analysis [24]. Camp
et al. [25] develop a hybrid implementation based on
an MPI/threads programming model, which is also
used in a distributed GPU-accelerated particle tracing
implementation [26].

We regard our system as a hybrid method. The
MPI/threads model is also used with a unique task design,
which is a packet of particles instead of single particles
that are used by Camp et al. [25]. This model also enables
us to trace massive particles on all available CPU and
GPU resources simultaneously. In the following sections, we
further compare our work with previous studies.

Our work is also related to adaptive refinements in
FTLE computation. Barakat and Tricoche [27] show that the
FTLE field can be estimated by sparse samples instead of
tracing densely seeded particles. An alternative approach
is to sacrifice accuracy by hierarchical particle tracing [28].
These methods, however, are difficult to scale in distributed
parallel environments. Our algorithm instead adapts the
number of Monte Carlo runs in a full-resolution SFM com-
putation.

3 DECOUPLED AND ADAPTIVE SFM COMPUTA-

TION

In this section, we introduce the decoupled scheme and
the adaptive refinement algorithm to compute SFMs. The
workflow of our method is shown in Figure 3. We first
compute decoupled SFMs and then compose them to SFMs
of arbitrary time intervals. The SFMs are further used for
visualization and analysis.

C3

C2 p01(1,2)
p12(2,2)

p12(1,2)

p12(0,2)

p01(1,1)
C1

C0

t=0 t=1 t=2

p01(1,0)

Fig. 4. An example of decoupled SFM computation in a tiny system
(4 cells). The probability of Φ2

0
(C̄1) ∈ C2 can be estimated as C1

p2
0
(1, 2) =

∑
k
p1
0
(1, k)p2

1
(k, 2).

3.1 Decoupled Computation of SFMs

Decoupling the particle advection of successive time steps
is the key to achieving high scalability in SFM computation.
Decoupling removes the time dependencies, so that we can
first compute SFMs for adjacent time steps in independent
runs and then compose them for arbitrary time intervals.
Decoupling has two benefits. First, it reduces the commu-
nication cost, because the lifetimes and travel distances of
particles are less than those in long time periods. Second, it
reduces memory cost, because the working datasets in the
decoupled computation are smaller. It thus further enables
data duplication in each process to improve data locality
and reduce communication in parallel processes.

We illustrate the SFM decoupling in Figure 1(c). For-
mally, we decouple the computation of ρtstr , given arbitrary
r and s that satisfy 0 ≤ r < s ≤ nt − 1, where nt is the
number of time steps of the data. We first independently

compute SFMs for adjacent time steps ρ
tq+1

tq
, 0 ≤ k < nt−2,

and then compose all the ρ
t(q+1)

tq
to get ρtstr .

As illustrated in Figure 4, without loss of generality, we
can compute p20(i, j) given p10 and p21:

pt2t0(i, j) =
m−1∑

k=0

pt1t0(i, k)p
t2
t1
(k, j), (5)

where i, j, and k are cell indices and m is the number of cells
in the mesh discretization. Equation 5 can also be written in
the matrix form for any given i and j:

P
t2
t0

= P
t1
t0
P

t2
t1
, (6)

where the dimension of the matrices P is m × m. We can
further derive SFMs For arbitrary time intervals:

P
ts
tr

=
∏

r≤q≤s−1

P
tq+1

tq
. (7)

The matrices are usually sparse, and we further reduce the
computation and storage cost by pruning small elements in
the matricies.

3.2 Adaptive Refinement of SFMs

We dynamically control the number of Monte Carlo runs
for each seed location in order to improve precision and
reduce computational cost. Adaptive refinement is based
on the observation that transport behaviors in flows are

5

Seed

End Locations

Initial Samples Adaptive
Re!nement

N

SFM
Stable? Done

Y

Fig. 5. Adaptive refinement of SFMs.

0 1600800 0 7.43.7

0 7.43.70 7.43.7

(a) (b)

(c) (d)

#samples entropy

entropyentropy

Fig. 6. Experiment results of the uncertain Isabel data: (a) the number
of Monte Carlo runs with adaptive refinement; (b) the entropy of SFMs
computed with adaptive refinement; (c) and (d) the entropy of SFMs
computed with 256 and 2,048 runs, respectively.

usually coherent. Barakat and Tricoche [27] propose an
adaptive refinement of deterministic flow maps based on
reconstruction of sparse samples. Denser seeds are needed
in regions with rich flow features, and fewer samples are
necessary in less complicated parts. However, the technique
is hard to scale in parallel. We instead use densely seeded
particles and adaptively control the number of stochastic
runs for each seed.

The adaptive refinement for each seed is illustrated in
Figure 5. In the kth iteration, a batch of particles is traced
from the seed x0, and the density of these particles is
estimated as Dk(x0;x). The loop exits if D(x0;x) converges.
We use the difference of information entropies between
Dk−1(x0;x) and Dk(x0;x) as the criterion. The information
entropy of a random variable X is defined as

H(X) = −
m∑

l=0

P (xl) log(P (xl)), (8)

where m is the number of probabilistic states (number of
cells in this case) and P (xl) is the probability of state xl.
We then evaluate H(Dk−1(x0;x)) and H(Dk(x0;x)). If
|H(Dk) − H(Dk−1)| is greater than a preset threshold, we
add more samples; otherwise we stop the iteration and store
Dk(x0;x) in the sparse matrix. Figure 6 shows a comparison
of adaptive refinement with fixed numbers of Monte Carlo
runs in the uncertain Isabel dataset. More particles are
traced in the hurricane eye regions, while fewer are sampled
in other regions. Comparing Figure 6(b) with 6(c) and 6(d),
we can see that the entropy field generated by adaptive
refinement is similar to that generated with large numbers
of samples. In other words, adaptive refinement can achieve
better precision with fewer particles.

4 SOFTWARE ARCHITECTURE DESIGN

Our parallel particle tracing framework exploits hierarchical
parallelization. At the top level, the processes are divided
into groups. Each group duplicates the working data and
traces a different set of seeds. Inside each group, we par-
allelize over the data. Each process has a portion of data
blocks. A novel task model based on MPI/thread hybrid
parallelization is used. The rationale for our hierarchy is
based on decoupled and adaptive SFM computation. First,
the decoupling makes it possible to have higher degrees of
data duplication for better scalability because the working
data of two adjacent time steps are smaller than that of
the whole dataset. Second, the adaptive refinement allows
asynchronous processing, which also boosts the scalability
of parallel particle tracing.

We further implement a novel task model design—
packets of particles—to achieve high parallel efficiency in
the MPI/thread model. Within each process, the tasks are
scheduled and processed by a pool of threads in paral-
lel. The interprocess task exchange is managed by a ded-
icated thread, which handles nonblocking MPI commu-
nication. Lock-free data structures are used to exchange
data between threads. In general, this design is fully
asynchronous—communication and computation are over-
lapped, and threads are synchronization-free. This design
improves data locality and enables CPU/GPU coprocessing.

4.1 Initialization

Because the decoupled SFM computation yields smaller
working data, typically two adjacent time steps, we can
duplicate data in order to improve data locality. We first
partition the data into blocks and then determine how many
processes to assign to each group for the given memory
limit. For example, given 4 processes, 64 total blocks, and 32
maximum number of blocks per process, we would create 2
process groups.

Within groups, the blocks are distributed across pro-
cesses. As in Peterka et al. [15], we statically assign blocks
to processes by a round-robin scheme. Each process is in
charge of one or more blocks. In addition, threads and lock-
free data structures for task exchanging are created upon the
initialization.

6

INIT TRACE RETURN CHECK

initialize seeds
for tracing

send particles back
to home block

continue particles
in another block

initialize more particles for the seeds if necessary

check if all particles with
the same seed are !nished

Fig. 7. Task model. We design four types of tasks to initialize, continue,
return, and refine the SFM computations.

Qsend
p0 p1 ... pm-1INIT blk_id=32

INIT blk_id=3

TRACE

TRACE

TRACE

CHECK

CHECK

TRACE

Qwork (CPU)

TRACE

TRACE

...

...

...

... ...

...

Qwork (GPU) Comm/

Sched

Thread

R
e

m
o

te
 P

ro
ce

sse
s

C0

Worker

Threads

(GPU)

C1G0

C2G1

Worker

Threads

(CPU)

C3 C4

C5 C6

C7 C8

C9 ...

enqueue()

Fig. 8. Thread model on single processes. The comm/sched thread
exchanges tasks with remote processes and schedules tasks on CPUs
and GPUs. The worker threads consume and produce tasks for SFM
computation. The work queues and send queues buffer the pending
tasks.

4.2 Task Model

Figure 7 illustrates the task model. We define a task as a
tuple (blkID, type, particles[]), where particles[] is a packet
of particles associated with only on block (blkID). The
granularity of a task is one or more particles, up to a given
limit. Each particle is a tuple (x0, x) consisting of its initial
and current spatiotemporal locations, respectively.

Four types of tasks are depicted in the model: initializa-
tion (INIT), tracing (TRACE), return (RETURN), and checking
(CHECK).

• INIT tasks are used to initialize particles for a list
of seed locations in the given block. Particles are
created either by the system for bootstrapping or by
the CHECK tasks when more particles are necessary
to refine the SFMs.

• TRACE tasks start or continue to trace a packet of
particles that are not finished yet. If particles are
moving out of the current block, new TRACE tasks
associated with the target blocks are created.

• RETURN tasks are created by TRACE tasks to send
finished particles to their home blocks.

• CHECK tasks check termination for particles released
at the same location x0. The density is written to
the output sparse matrix if it is converged; otherwise
new INIT tasks are created to refine the density.

4.3 Thread Model

We use a thread pool for parallelism within a single pro-
cess. Figure 8 illustrates the thread model in our design.

Algorithm 1 Worker thread loop. The process task() func-
tion processes an input task and returns a list of new tasks
to continue the computation.

while !all done do
if Qwork.pop(task) then

new tasks[] = process task(task)
for all task in new tasks[] do

comm.enqueue(task.blkID, task)

Algorithm 2 Enqueue task

function ENQUEUE(blkID, task)
i←blkID to rank(blkID)
if i=comm.rank then

if task.size≥max_size_GPU then
split tasks[]=task.split(max_size_GPU)
enqueue all(split tasks[])

else if task.size≥min_size_GPU then
Q

(GPU)
work .push(task)

else if task.size≥max_size_CPU then
split tasks[]=task.split(max_size_CPU)
enqueue all(split tasks[])

else
Q

(CPU)
work .push(task)

else
Qi

send.push(task)

Two types of threads exist: the communicator/scheduler
(comm/sched) threads and the worker threads. Several
lock-free producer-consumer queues are used to schedule
and exchange tasks between threads. There are two groups
of queues: the work queues (QCPU

work and QtextGPU
work) and the

send queues (Qsend) that keep the pending tasks for the local
and remote processes, respectively.

Algorithm 1 shows the pseudo code of the worker thread
main loop. The worker threads function as both producers
and consumers. Worker threads consume tasks and also
produce new tasks to deliver particles to their next or final
destinations. The new task is enqueued to the work queue
if the current process owns the destination block; otherwise
the task is appended to the send queues. The enqueue()

function (Algorithm 2) simplifies the task routing.
The maximum number of particles for each task

(max_size_CPU), which defines the granularity of a TRACE
task, is the most important parameter that determines the
scalability of the thread pool. Larger task size leads to
load imbalance because there are fewer concurrent tasks
and some threads are starving. On the contrary, a smaller
task size can result in more context switches and more
contention for the task queues. Figure 9 shows a scalability
benchmark using different max_size_CPU values. In this
experiment, 64 is the optimal selection. A similar parameter
(max_size_GPU) needs to be configured when a GPU is
available for coprocessing with CPUs. The principle to set
max_size_GPU is to have approximately equivalent pro-
cessing time on GPUs as that on CPUs, so max_size_GPU is
usually larger than max_size_CPU. More details on the pa-
rameter setting in CPU/GPU coprocessing are in Section 4.5.

The comm/sched thread consumes tasks in the send
queues by sending them to the destination process and

7

102

101

100

10-1

1 2 4 8 16 32 63

max_size_CPU = 2048

max_size_CPU = 256

max_size_CPU = 64 (optimal)

max_size_CPU = 1

ideal scaling

Worker threads per process

Strong Scalability

T
im

e
 (

se
co

n
d

s)

optimal

32.0

31.1

1.3

0.8
0.9

Fig. 9. Benchmark of the flow map computation in tornado simulation
data (32K particles) with different max_size_CPU and different num-
bers of worker threads per process on 32 Blue Gene/Q nodes. A proper
selection of max_size_CPU leads to better performance and scalability.

enqueues tasks that are received from remote processes to
work queues. Our thread model uses a dedicated thread for
communication, a common practice in the implementation
of high-level task-parallel programing models. In addition,
our comm/sched thread schedules tasks for load balancing
and CPU/GPU coprocessing.

4.4 Asynchronous Communication

We adopt a two-tiered asynchronous design. First, the inter-
process communication overlaps the computation by using
a dedicated comm/sched thread. Second, the comm/sched
thread uses MPI nonblocking communications to further
reduce the delays. Specifically, tasks are exchanged between
blocks across processes by the two-tiered asynchronous
communication to overlap the computation. Each process
has a dedicated comm/sched thread to send and receive
messages from remote processes. The comm/sched thread
executes and manages nonblocking MPI requests without
any waits.

Algorithm 3 Comm/sched thread loop

while !all done do
for all i in comm.world do ⊲ outgoing tasks

if Qi
send.pop bulk(tasks, max_size_send) then

comm.isend(i, serialize(tasks))

while comm.iprobe() do ⊲ incoming tasks
tasks = unserialize(comm.recv())
for all task in tasks do

enqueue(task.blkID, task)

comm.iexchange(all done) ⊲ exchange status

The pseudo code of the comm/sched thread main loop
is listed in Algorithm 3. Each process maintains a list of
lock-free send queues {Qi

send}, where i is the destination
rank. The tasks in the send queues are pushed by the
worker threads via enqueue() calls. In every iteration of
the loop, the comm/sched thread tries to dequeue a bulk

Running time
(a)

(b)

CPU1

CPU2
...

...

...

...

...

...

CPUn-3

CPUn-2

CPUn-1

GPU0

GPU1

CPU0 ...

Running time

CPU1

CPU2

...
...

...

...

CPUn-1

CPU0

Blk2 Blk2 Blk8 Blk3 Blk1

Blk6 Blk4 Blk3 Blk1 Blk5 Blk1Blk1

Blk2 Blk2 Blk7 Blk7 Blk3 Blk4

Blk0 Blk3 Blk2 Blk4 Blk6 Blk6

Blk8 Blk8 Blk0 Blk2 Blk1 Blk8 Blk2

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk(n-1)

Blk1

Blk2

Blk(n-1)

...

COMM INIT TRACE RETURN CHECK

Fig. 10. Gantt chart of (a) our task model and (b) the bulk synchronous
parallel model. Each row represents a thread.

of tasks from each Qi
send. The list of tasks is then serial-

ized and sent to the destination process by nonblocking
send (MPI_Isend). The incoming messages are received by
MPI_Recv if they are probed by MPI_Iprobe. The loop
exits when all tasks across all processes are finished. A non-
blocking version of Francez’s algorithm [29] is implemented
for distributed termination, as in a previous parallel particle
tracing study [22].

For m processes, we use m−1 send queues, which yield
better performance than does single queue. In our design,
a set of tasks with the same destination rank is obtained
with the pop_bulk() function in the lock-free queue. Thus,
we can send a larger message that contains multiple tasks
to the same destination rank, instead of multiple smaller
messages each with a single task. We do so because larger
message size usually leads to better bandwidth than smaller
messages do.

The two-tiered asynchronous design enables the full
overlap between computation and communication. As illus-
trated in Figure 10(a), the comm/sched thread (CPU0) and
the worker threads (other CPUs) work concurrently without
any explicit synchronization. In Section 6.3 we compare
our design with communication models in previous parallel
particle tracing studies.

4.5 CPU/GPU Coprocessing

The thread pool model enables hybrid CPU/GPU paral-
lelization, which fully utilizes the computation power of
both CPUs and GPUs in compute nodes.

Our task-scheduling strategy is to fill GPUs with larger
tasks and assign complex or small tasks for CPUs. GPUs
can be seen as SIMD processors, which are suitable for
handling a batch of tasks simultaneously. However, the data
movement cost between the CPU and GPU is significant.
Specifically, the particles must be transferred to the GPU
memory before they are traced, and they have to be copied
back to the main memory for further processing. The clock
speed of GPUs is also slower than that of CPUs. Thus, the
overall performance drops if there are too few particles for

8

a batch. This phenomenon was observed by Camp et al. [26]
in distributed and parallel environments.

We associate a GPU worker thread (running on the CPU)
with each GPU. The data blocks in the main memory are
copied into GPU in the initialization stage. A designated
GPU task queue is also set up for task scheduling. In the
enqueue() function, larger tasks and smaller tasks are
pushed into the GPU and CPU queues, respectively.

Similar to the rationale of max_size_CPU for CPU
workers, we also need to limit the task size for the GPU, that
is, min_size_GPU and max_size_GPU. In principle, the
running time cannot be too long, in order to keep load bal-
anced. We usually set max_size_CPU ≤ min_size_GPU <
max_size_GPU.

Although we have two different work queues for CPUs
and GPUs, the tasks do not have to be processed by their
designated processors. A CPU worker thread can dequeue
a task from the GPU queue when the thread is starving,
and vice versa for GPU worker threads. When a task T
in the GPU queue is processed by a CPU worker thread,
T may be split before further processing. Because the task
size is usually greater than max_size_CPU, the incoming
task is cut into two subtasks T1 and T2. Task T1 has size
max_size_CPU, and task T2 is the rest. T1 is processed
with the current CPU worker thread, and T2 is enqueued
to worker queues for further processing. Notice that T2 may
or may not qualify as a GPU task depending on its size.

When a task T in the CPU queue is obtained by a GPU
worker thread, it may or may not be processed with the
associated GPU. First, if the size of the TRACE task T is
smaller than min_size_GPU, it is still handled by a CPU.
Second, the INIT and RETURN are also processed on a CPU.

4.6 Implementation

We implemented the prototype system with C++11. MPI is
used for interprocess communication. For each process, the
worker threads are created with Pthreads, and the parent
thread plays the role of the comm/sched thread. We use a
lock-free concurrent queue implementation [30] to exchange
tasks between threads. Because only one thread makes MPI
calls, we use the MPI_THREAD_FUNNELED mode on initial-
ization. DIY2 [31], [32] is used for domain decomposition.
The Block I/O Layer (BIL) library [33] is used to efficiently
load disjoint block data across different files and processes
collectively. We also implemented a thread-specific random
number generator for stochastic particle tracing, because
the random number generator in the C++ standard library
does not scale multiple threads in our experiments. The
GPU code is written in CUDA. Upon initialization, the data
blocks are copied to the GPU memory, and then a buffer
that can fit max_size_GPU particles is created. Particles
in the TRACE task are copied to the GPU and then copied
back after they are traced. After the computation, we store
the SFMs in a sparse matrix that is managed by the PETSc
library [34].

5 APPLICATION RESULTS

We applied our method to two weather simulation datasets
with uncertainties: uncertain Hurricane Isabel data and
ensemble Weather Research and Forecasting (WRF) data.

(a) (b)

Fig. 11. Volume rendering of (a) uncertain LCSs and (b) FTLE-D of the
uncertain Isabel data.

5.1 Input Data

Uncertainty arises in the Hurricane Isabel data from tem-
poral down-sampling. In climate and weather simulations,
a common practice is to dump average data hourly or
daily instead of every time step. Such data down-sampling
reduces the I/O cost but sacrifices accuracy. We follow Chen
et al. [35] who use quadratic Bezier curves to quantify the
uncertainty of the original Hurricane Isabel data from the
IEEE Visualization Contest 2004. The spatial resolution of
the original data is 500 × 500 × 100. The down-sampled
dataset we use in the experiment keeps the full spatial
resolution but aggregates every 12 time steps into one. The
parameters of the quadratic Bezier curves and the Gaussian
error are used to reconstruct the uncertain flow field for SFM
computation.

The uncertainty of the ensemble WRF data arises from
averaging the ensemble members. The input data, cour-
tesy of the National Weather Service, is simulated with
the High Resolution Rapid Refresh model [36]. The model
is based on the WRF model and assimilates observations
from National Oceanic and Atmospheric Administration
and other sources. The spatial resolution of the model is
1799 × 1059 × 40, and we use 10 ensemble members with
15 hourly averaged outputs for our experiment. The uncer-
tainty is modeled as Gaussian—the mean and covarances of
the ensemble members are computed for every grid point
location.

5.2 Uncertain Source-Destination Queries

Scientists can investigate and explore the uncertain trans-
port behaviors by queries. Figure 12(a) shows the uncertain
source-destination query results. We create particles along a
line in the domain and visualize the distributions of these
particles after every hour by volume rendering. The blue
line at the 0th hour indicates the distribution of of the seeds,
which is deterministic. As the time evolves, we can see that
the uncertainties of SFMs grow as the advection. In addition,
the uncertain transport behaviors in different regions are
different.

5.3 Uncertain FTLE and LCS Visualization

FTLE and LCS are the most important tools for analyzing
deterministic unsteady flow. The FTLE was proposed by
Haller [37], and it measures the convergence or divergence

9

0h

6h

10h

4h

8h

(a)

(b)

(c)

0h 4h

Fig. 12. Experiment results of the WRF ensemble simulation data: (a)
uncertain source-destination queries; (b) uncertain LCSs; (c) FTLE-D.

for the time interval of interest. Recently, Guo et al. [1]
generalized FTLE and LCS to analyze uncertain unsteady
flows based on SFMs. Three new concepts were introduced:
D-FTLE (distributions of FTLE), FTLE-D (FTLE of distri-
butions), and U-LCS (uncertain LCS). We compute FTLE-
D and U-LCS from the uncertain Isabel data and the WRF
ensembles in Figure 11 and Figure 12, respectively.

The FTLE-D and U-LCS in Figures ??(a) and ??(b) show
connective bands of the uncertain Isabel data. The spiral
arm that extends to the east coast separates two different
motions: the flow going upwards and the flow remaining
horizontal. Because there is more uncertainty in updraft and
downdraft flows, the boundary of the two features is fuzzy,
as shown in the U-LCS and the FTLE-D.

In the WRF ensembles, we can also observe that the
upward and downward air flows lead to uncertainties in U-

LCS and FTLE-D. These are due mainly to the land surface
variability. We can see four distinct regions in Figures 12(b)
and 12(c): the on-shore flow from the Pacific Ocean to
the Cascade mountains, a cold front from Oklahoma to
Dakotas, and two unstable troughs in the Midwest and the
East. The visualization results of FTLE-D and U-LCS, which
are confirmed by meteorologists, highlight these unstable
zones.

6 PERFORMANCE EVALUATION

We study the scalability of our method on two supercom-
puters: Mira and Titan. We also compare our parallel particle
tracing scheme with previous studies.

6.1 Scalability Study on the Blue Gene/Q Systems

We conducted a scalability study on Mira, an IBM Blue
Gene/Q system at Argonne National Laboratory. The the-
oretical peak performance of Mira is 10 petaflops. Each
compute node has 16 1.6 GHz PowerPC A2 cores, which
support 64 hardware threads in total. The memory on each
node is 16 GB, and the interconnect is a proprietary 5D torus
network.

We ran one MPI process on each node, with one
comm/sched thread and 63 worker threads for computa-
tion. These choices are based on the experiments in Sec-
tion 4.3. We limited the memory for data blocks to 1 GB
per process. For the uncertain Isabel data, we use both fixed
numbers of Monte Carlo runs and adaptive refinements for
comparison. For the fixed sampling, the number of runs is
256; thus, the total number of particles is about 6.5 billion.

Figures 13(a) and 13(c) show the timings of SFM compu-
tation on both datasets with different numbers of processes
on Mira. Ideal scaling curves based on linear speedup are
shown for reference. From the benchmark we can see that
the speedup is nearly linear. The parallel efficiency of 4K,
8K, and 16K processes is 92%, 85%, and 72%, respectively.
The main reason for this scalability is the decoupled SFM
computation that removes the time dependency. Because
we need to load only two adjacent time steps at once, we
can duplicate more working data for less communication.
Figure 13(a) also shows that adaptive refinement reduces
the computation time, compared with fixed sampling.

6.2 Scalability Study on CPU/GPU Hybrid Architectures

We benchmarked the CPU/GPU coprocessing on Titan,
which is a Cray XK7 supercomputer at Oak Ridge National
Laboratory. Titan has 18,688 compute nodes, each equipped
with an AMD Opteron 6274 16-core CPU that operates at 2.2
GHz with 32 GB of main memory. In addition to the CPU,
each node also contains an NVIDIA Tesla K20X GPU with 6
GB memory. The number of CUDA cores on a single GPU
is 2,688, running at 732 MHz. We use up to 8,192 compute
nodes in our experiments.

Figure 13(b) shows the strong scalability benchmark on
the uncertain Isabel dataset. The problem size is the same
as that on Mira, 6.5 billion particles. In the experiments, we
fully used the CPU resources by running 15 worker threads
and one comm/sched thread per process on each node.
In the CPU/GPU coprocessing mode, one of the worker

10

mira_�xed

mira_adaptive

ideal scaling

102

101

100

103

Processes

T
im

e
 (

se
co

n
d

s)

Strong Scalability

485.8

744.5

10.8

92%

85%

72%

8.1

64 128 256 512 1K 2K 4K 8K 16K

(a)

titan_�xed_hybrid

titan_�xed_cpu_only

titan_�xed_gpu_only

titan_adaptive_hybrid

ideal scaling

102

101

100

103

T
im

e
 (

se
co

n
d

s)

Processes

Strong Scalability
816.4

612.4
250.6

184.7

8.3

19.8

3.1

1.9

64 128 256 512 1K 2K 4K 8K

(b)

256 512 1K

mira_ xed

ideal scaling

103

102

104

Ti
m

e
(s

ec
o

n
d

s)

Processes

Strong Scalability

273.3

1020.0

(c)

Fig. 13. Strong scalability studies of our method: (a) uncertain Isabel
data on Mira; (b) uncertain Isabel data on Titan; (c) ensemble WRF data
on Mira.

threads managed the GPU. We conducted three runs to
study the effectiveness of CPU/GPU hybrid parallelization:
pure CPU mode, pure GPU mode, and hybrid mode. The

ideal scaling

102

101

100

10-1

103

Processes

Strong scalability

T
im

e
 (

se
co

n
d

s)

max_size_CPU = 64 (our method)

Bulk synchronous (Peterka et al.)

max_size_CPU = 1 (Camp et al., simulated)

261.9

189.5

195.1

24.0

1.5

1.0

1 2 4 8 16 32 64 128 256

Fig. 14. Performance comparison with two parallel particle tracing meth-
ods [31] and [25].

pure GPU mode is used for comparison only. In this mode,
only one worker thread is used, and all tasks are conducted
on the GPU regardless of task size; that is, min_GPU_size
is zero.

Results show that the computation time of the hybrid
mode is about 2.5× faster than with the pure CPU mode. For
reference, Camp et al. [26] report a speedup of 1× to 10.5×
on a distributed-memory GPU particle tracer compared
with a CPU-only code on 8 nodes. Based on this and and
other previous studies, we believe that our 2.5× speedup
is promising. Our hybrid parallelization design enables the
full use of available hardware resources on compute nodes,
including all CPU and GPU cores. The scheduling of CPUs
and GPUs is also adaptive, capable of balancing working
time between CPU and GPU workers. Moreover, the hybrid
implementation is scalable up to 131,072 Opteron cores with
8,192 NVidia K20 GPUs in our test. At this scale, tracing
billions of particles takes less than 10 seconds.

6.3 Comparison with Parallel Particle Tracing Algo-

rithms

We also compared our method with parallel particle tracing
algorithms. The baseline approaches are those of Peterka
et al. [31] and Camp et al. [25]. Both algorithms partition
data into blocks for parallel processing and use MPI/thread
hybrid parallelization. We implemented these algorithms
and compared their performance on the same dataset and
problem size. In the experiment, we used the deterministic
tornado dataset and 32 threads per process for computation.
Only one process group was used, so there is no data
duplication for the comparison. The timings with respect
to different numbers processes are shown in Figure 14. We
can see that our method outperforms the others.

The parallel model used by Peterka et al. [31] is bulk syn-
chronous (Figure 10(b)). In this model, each block of data is
associated with a thread in one single process. The particles
are traced in the current block until they cross the block
bounds, and then they are exchanged between neighbor
blocks collectively. Compared with the bulk synchronous
parallel model, our model does not associate blocks with

11

threads. We also fully overlap the communication and com-
putation in our framework.

The thread pool pattern is used by Camp et al. [25],
but the major difference in our design is the task model
and the software design. Their task granularity is limited
to a single particle instead of a packet of particles as in our
method. Therefore, Figure 14 we simulate their method with
the max_CPU_size of 1 (for one particle) and compare the
performance with our method with larger max_CPU_sizes.
In Section 4.3, we showed that our task model yields fewer
context switches and enables the CPU/GPU coprocessing.
In addition, we use lock-free data structures and two-tiered
asynchronous communication for intra- and interprocess
task exchange.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a scalable SFM computation
method for uncertain flow visualization and analysis. The
keys to achieving high scalability are the decoupled and
adaptive algorithms, the MPI/thread hybrid paralleliza-
tion, and the unique task design that assembles packets of
particles. The decoupling allows us to compute SFMs of
adjacent time steps and then compose them together. The
number of stochastic runs can be adaptively configured for
better efficiency and precision. We parallelize over tasks,
which are packets of particles, to achieve high efficiencies
in the MPI/thread hybrid programming. Our parallelization
design also enables CPU/GPU coprocessing when GPUs are
available. Results show that our method can help scientists
analyze uncertain flows in greater detail with higher perfor-
mance than previously possible.

We would like to extend our work to support more
many-core architectures, such as the Intel Xeon Phi. The data
localities can be also improved in NUMA architectures. We
would also like to incorporate more uncertain flow analysis
tools, such as uncertain topology analysis. Our algorithms
could also be used in in situ flow analysis frameworks in
the future.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. This work is also supported
by the U.S. Department of Energy, Office of Advanced Scien-
tific Computing Research, Scientific Discovery through Ad-
vanced Computing (SciDAC) program. This research used
resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. This research also
used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] H. Guo, W. He, T. Peterka, H.-W. Shen, S. M. Collis, and J. J. Hel-
mus, “Finite-time Lyapunov exponents and Lagrangian coherent
structures in uncertain unsteady flows,” IEEE Trans. Vis. Comput.
Graph., vol. 22, no. 6, pp. 1672–1682, 2016.

[2] M. Otto, T. Germer, and H. Theisel, “Uncertain topology of 3D
vector fields,” in Proceedings of IEEE Pacific Visualization Symposium
2011, 2011, pp. 67–74.

[3] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka,
“Parallel particle advection and FTLE computation for time-
varying flow fields,” in SC12: Proceedings of ACM/IEEE Conference
on Supercomputing, 2012, pp. 61:1–61:11.

[4] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erick-
son, “Simplified parallel domain traversal,” in SC11: Proceedings of
the ACM/IEEE Conference on Supercomputing, 2011, pp. 10:1–10:11.

[5] C. R. Johnson and A. R. Sanderson, “A next step: Visualizing errors
and uncertainty,” IEEE Comput. Graph. Appl., vol. 23, no. 5, pp. 6–
10, 2003.

[6] K. Brodlie, R. A. Osorio, and A. Lopes, “A review of uncertainty
in data visualization,” in Expanding the Frontiers of Visual Analytics
and Visualization, J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C.
Wong, Eds. Springer London, 2012, pp. 81–109.

[7] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” Comput. Graph. Forum, vol. 23, no. 2,
pp. 203–222, 2004.

[8] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch,
“The state of the art in flow visualization: Feature extraction and
tracking,” Comput. Graph. Forum, vol. 22, no. 4, pp. 1–17, 2003.

[9] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser, “The state of the art in topology-
based visualization of unsteady flow,” Comput. Graph. Forum,
vol. 30, no. 6, pp. 1789–1811, 2011.

[10] C. M. Wittenbrink, A. Pang, and S. K. Lodha, “Glyphs for visual-
izing uncertainty in vector fields,” IEEE Trans. Vis. Comput. Graph.,
vol. 2, no. 3, pp. 266–279, 1996.

[11] R. P. Botchen, D. Weiskopf, and T. Ertl, “Texture-based visu-
alization of uncertainty in flow fields,” in Proceedings of IEEE
Visualization 2005, 2005, pp. 647–654.

[12] M. Otto, T. Germer, H.-C. Hege, and H. Theisel, “Uncertain 2D
vector field topology,” Comput. Graph. Forum, vol. 29, no. 2, pp.
347–356, 2010.

[13] D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann, “A
variance based FTLE-like method for unsteady uncertain vector
fields,” in Topological Methods in Data Analysis and Visualization II,
ser. Mathematics and Visualization, R. Peikert, H. Hauser, H. Carr,
and R. Fuchs, Eds. Springer, 2011, pp. 255–268.

[14] E. W. Bethel, H. Childs, and C. Hansen, High Performance Visual-
ization: Enabling Extreme-Scale Scientific Insight. CRC Press, 2012.

[15] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing
for steady-state and time-varying flow fields,” in IPDPS11: Pro-
ceedings of IEEE International Symposium on Parallel and Distributed
Processing, 2011, pp. 580–591.

[16] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced
parallel streamline generation on large scale vector fields,” IEEE
Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 1785–1794, 2011.

[17] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualization
of large time-varying 3D vector fields,” in SC07: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2007, pp. 24:1–24:12.

[18] L. Chen and I. Fujishiro, “Optimizing parallel performance of
streamline visualization for large distributed flow datasets,” in
Proceedings of IEEE Pacific Visualization Symposium 2008, 2008, pp.
87–94.

[19] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber,
“Scalable computation of streamlines on very large datasets,” in
SC09: Proceedings of the ACM/IEEE Conference on Supercomputing,
2009, pp. 16:1–16:12.

[20] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng, and
J. Pan, “Advection-based sparse data management for visualizing
unsteady flow,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp.
2555–2564, 2014.

[21] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Parallel
stream surface computation for large data sets,” in LDAV12: Pro-
ceedings IEEE Symposium on Large Data Analysis and Visualization,
2012, pp. 39–47.

[22] K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream
surfaces on large scale vector fields,” in SC14: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2014, pp. 1008–1019.

[23] C. Mueller, D. Camp, B. Hentschel, and C. Garth, “Distributed
parallel particle advection using work requesting,” in LDAV13:

12

Proceedings IEEE Symposium on Large Data Analysis and Visualiza-
tion, 2013, pp. 109–112.

[24] H. Guo, X. Yuan, J. Huang, and X. Zhu, “Coupled ensemble
flow line advection and analysis,” IEEE Trans. Vis. Comput. Graph.,
vol. 19, no. 12, pp. 2733–2742, 2013.

[25] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Stream-
line integration using MPI-hybrid parallelism on a large multicore
architecture,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 11, pp.
1702–1713, 2011.

[26] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W.
Bethel, K. I. Joy, and H. Childs, “GPU acceleration of particle
advection workloads in a parallel, distributed memory setting,”
in EGPGV13: Proceedings of Eurographics Parallel Graphics and Visu-
alization Symposium, 2013, pp. 1–8.

[27] S. S. Barakat and X. Tricoche, “Adaptive refinement of the flow
map using sparse samples,” IEEE Trans. Vis. Comput. Graph.,
vol. 19, no. 12, pp. 2753–2762, 2013.

[28] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line inte-
gration,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 8, pp. 1148–
1163, 2011.

[29] N. Francez, “Distributed termination,” ACM Trans. Program. Lang.
Syst., vol. 2, no. 1, pp. 42–55, 1980.

[30] C. Desrochers, “A fast multi-producer, multi-
consumer lock-free concurrent queue for C++11,”
https://github.com/cameron314/concurrentqueue.

[31] T. Peterka, R. B. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-
W. Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building
blocks for custom data analysis,” in LDAV11: Proceedings IEEE
Symposium on Large Data Analysis and Visualization, 2011, pp. 105–
112.

[32] D. Morozov and T. Peterka, “Block-parallel data analysis with
DIY2,” Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-
1005149, 2016.

[33] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross, “To-
ward a general I/O layer for parallel-visualization applications,”
IEEE Computer Graphics and Applications, vol. 31, no. 6, pp. 6–10,
2011.

[34] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software
libraries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[35] C.-M. Chen, A. Biswas, and H.-W. Shen, “Uncertainty modeling
and error reduction for pathline computation in time-varying flow
fields,” in Proceedings of IEEE Pacific Visualization Symposium 2015,
2015, pp. 215–222.

[36] C. Alexander, D. C. Dowell, S. S. Weygandt, S. G. Benjamin, M. Hu,
T. G. Smirnova, J. B. Olson, J. M. Brown, E. P. James, and P. Hof-
mann, “The high-resolution rapid refresh: Recent model and data
assimilation development towards an operational implementation
in 2014,” in Proceedings of 26th Conference on Weather Analysis
and Forecasting / 22nd Conference on Numerical Weather Prediction.
American Meterological Society, 2014.

[37] G. Haller, “Distinguished material surfaces and coherent struc-
tures in three-dimensional fluid flows,” Physica D: Nonlinear Phe-
nomena, vol. 149, no. 4, pp. 248–277, 2001.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(Argonne). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf
of the Government. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

https://github.com/cameron314/concurrentqueue
http://energy.gov/downloads/doe-public-access-plan

	Introduction
	Background
	Stochastic Flow Maps
	Uncertain Flow Visualization and Analysis
	Parallel Particle Tracing

	Decoupled and Adaptive SFM Computation
	Decoupled Computation of SFMs
	Adaptive Refinement of SFMs

	Software Architecture Design
	Initialization
	Task Model
	Thread Model
	Asynchronous Communication
	CPU/GPU Coprocessing
	Implementation

	Application Results
	Input Data
	Uncertain Source-Destination Queries
	Uncertain FTLE and LCS Visualization

	Performance Evaluation
	Scalability Study on the Blue Gene/Q Systems
	Scalability Study on CPU/GPU Hybrid Architectures
	Comparison with Parallel Particle Tracing Algorithms

	Conclusions and Future Work
	References

